Camassa-Holm equations and vortexons for axisymmetric pipe flows

نویسنده

  • FRANCESCO FEDELE
چکیده

In this paper, we study the nonlinear dynamics of an axisymmetric disturbance to the laminar state in non-rotating Poiseuille pipe flows. In particular, we show that the associated Navier–Stokes equations can be reduced to a set of coupled Camassa–Holm type equations. These support inviscid and smooth localized travelling waves, which are numerically computed using the Petviashvili method. In physical space they correspond to localized toroidal vortices that concentrate near the pipe boundaries (wall vortexons) or wrap around the pipe axis (centre vortexons) in agreement with the analytical soliton solutions derived by Fedele (2012) for small and long-wave disturbances. Inviscid singular vortexons with discontinuous radial velocities are also numerically discovered as associated to special traveling waves with a wedge-type singularity, viz. peakons. Their existence is confirmed by an analytical solution of exponentially-shaped peakons that is obtained for the particular case of the uncoupled Camassa–Holm equations. The evolution of a perturbation is also investigated using an accurate Fourier-type spectral scheme. We observe that an initial vortical patch splits into a centre vortexon radiating vorticity in the form of wall vortexons. These can under go further splitting before viscosity dissipates them, leading to a slug of centre vortexons. The splitting process originates from a radial flux of azimuthal vorticity from the wall to the pipe axis in agreement with Eyink (2008). The inviscid and smooth vortexon is similar to the nonlinear neutral structures derived by Walton (2011) and it may be a precursor to puffs and slugs observed at transition, since most likely it is unstable to non-axisymmetric disturbances.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vortexons in axisymmetric Poiseuille pipe flows

We present a study on the nonlinear dynamics of small long-wave disturbances to the laminar state in non-rotating axisymmetric Poiseuille pipe flows. At high Reynolds numbers, the associated Navier-Stokes equations can be reduced to a set of coupled Korteweg–de Vries-type (KdV) equations that support inviscid and smooth travelling waves numerically computed using the Petviashvili method. In phy...

متن کامل

ar X iv : c ha o - dy n / 99 03 03 3 v 1 2 5 M ar 1 99 9 A connection between the Camassa - Holm equations and turbulent flows in channels and pipes

In this paper we discuss recent progress in using the Camassa-Holm equations to model turbulent flows. The Camassa-Holm equations, given their special geometric and physical properties, appear particularly well suited for studying turbulent flows. We identify the steady solution of the Camassa-Holm equation with the mean flow of the Reynolds equation and compare the results with empirical data ...

متن کامل

On Time Fractional Modifed Camassa-Holm and Degasperis-Procesi Equations by Using the Haar Wavelet Iteration Method

The Haar wavelet collocation with iteration technique is applied for solving a class of time-fractional physical equations. The approximate solutions obtained by two dimensional Haar wavelet with iteration technique are compared with those obtained by analytical methods such as Adomian decomposition method (ADM) and variational iteration method (VIM). The results show that the present scheme is...

متن کامل

Generalisations of the Camassa-Holm equation

We classify generalised Camassa-Holm type equations which possess infinite hierarchies of higher symmetries. We show that the obtained equations can be treated as negative flows of integrable quasi-linear scalar evolution equations of orders 2, 3 and 5. We present the corresponding Lax representations or linearisation transformations for these equations. Some of the obtained equations seem to b...

متن کامل

Multi-Component Integrable Systems and Invariant Curve Flows in Certain Geometries

In this paper, multi-component generalizations to the Camassa–Holm equation, the modified Camassa–Holm equation with cubic nonlinearity are introduced. Geometric formulations to the dual version of the Schrödinger equation, the complex Camassa– Holm equation and the multi-component modified Camassa–Holm equation are provided. It is shown that these equations arise from non-streching invariant c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013